sklearn中的决策树

news/2025/2/23 12:36:25

sklearn__0">sklearn 中的决策树

关键概念、核心问题

  • 节点

    1. 根节点:没有进边,有出边。包含最初的,针对特征的提问。
    2. 中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。
    3. 叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。
    4. 子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。
  • 核心问题

    1. 如何从数据表中找出最佳节点和最佳分枝?

    2. 如何让决策树停止生长,防止过拟合?

sklearntree_16">模块sklearn.tree

  • sklearn决策树的类都在”tree“这个模块之下。这个模块总共包含五个类:

    tree.DecisionTreeClassifier分类树
    tree.DecisionTreeRegressor回归树
    tree.export_graphviz将生成的决策树导出为DOT格式,画图专用
    tree.ExtraTreeClassifier高随机版本的分类树
    tree.ExtraTreeRegressor高随机版本的回归树

sklearn_28">sklearn的基本建模流程

  • sklearn建模的基本流程

    image-20210820153802776

    在这个流程下,分类树对应的代码是:

    from sklearn import tree                #导入需要的模块
    
    clf = tree.DecisionTreeClassifier()     #实例化
    clf = clf.fit(X_train,y_train)          #用训练集数据训练模型
    result = clf.score(X_test,y_test)       #导入测试集,从接口中调用需要的信息
    

sklearn_metrics_44">sklearn .metrics方法

  • 获取sklearn.metrics中的所有评估方法

    import sklearn
    
    sorted(sklearn.metrics.SCORERS.keys())
    
    """输出"""
    ['accuracy',
     'adjusted_mutual_info_score',
     'adjusted_rand_score',
     'average_precision',
     'completeness_score',
     'explained_variance',
     'f1',
     'f1_macro',
     'f1_micro',
     'f1_samples',
     'f1_weighted',
     'fowlkes_mallows_score',
     'homogeneity_score',
     'log_loss',
     'mean_absolute_error',
     'mean_squared_error',
     'median_absolute_error',
     'mutual_info_score',
     'neg_log_loss',
     'neg_mean_absolute_error',
     'neg_mean_squared_error',
     'neg_mean_squared_log_error',
     'neg_median_absolute_error',
     'normalized_mutual_info_score',
     'precision',
     'precision_macro',
     'precision_micro',
     'precision_samples',
     'precision_weighted',
     'r2',
     'recall',
     'recall_macro',
     'recall_micro',
     'recall_samples',
     'recall_weighted',
     'roc_auc',
     'v_measure_score']
    


http://www.niftyadmin.cn/n/5863405.html

相关文章

mysql之规则优化器RBO

文章目录 MySQL 基于规则的优化 (RBO):RBO 的核心思想:模式匹配与规则应用RBO 的主要优化规则查询重写 (Query Rewrite) / 查询转换 (Query Transformation)子查询优化 (Subquery Optimization) - RBO 的重中之重非相关子查询 (Non-Correlated Subquery)…

代码随想录-训练营-day35

309. 买卖股票的最佳时机含冷冻期 - 力扣(LeetCode) 这个题比起我们的买卖股票二来说多了一个冷冻期的说法,也就是我们卖出股票的第二天无法买入股票。 这样对我们而言,dp数组的含义,或者说dp数组中的状态显然就不能是…

Next.js 学习-1

Next.js学习 引用:https://www.nextjs.cn/learn/basics/create-nextjs-app 先试试水吧,正好dify用的这个构建的前端项目。 使用 如果您尚未安装 Node.js,请 从此处安装。要求 Node.js 10.13 或更高版本。 好吧得用新的了,记得…

如何在 ubuntu 上使用 Clash 与 docker 开启代理拉起

如何在 ubuntu 上使用 Clash https://github.com/doreamon-design/clash/releases上面是clash 的地址 clash_2.0.24_linux_386.tar.gz 下载 386 的 如果你的电脑是inter tar -xzvf clash_2.0.24_linux_386.tar.gz 启动 ./clash 然后会在电脑上生成一个config的文件 /home/xxx/…

在VS中如何将控制台(console)项目改为窗口(window)项目

1. 修改属性: 2. 修改main函数 int WINAPI WinMain(_In_ HINSTANCE hInstance,_In_opt_ HINSTANCE hPrevInstance,_In_ LPSTR lpCmdLine,_In_ int nShowCmd) //int main()

国产编辑器EverEdit - 洞察秋毫!内置文件比较功能!

1 文件比较 1.1 应用场景 项目开发过程中,可能不同的部分会由不同的人在负责,存在一个文件多人编辑的情况,用户需要寻找差异,并将文档进行合并,比较专业的文本比较工具为BeyondCompare,WinMerge等。   如…

【部署优化篇十四】【十万字全景拆解:GitHub Actions自动化流水线设计圣经(DeepSeek工业级实践大公开)】

一、从手工作坊到智能工厂:CI/CD的革命之路 想象一下,你所在的公司每天要手工组装1000台手机,每个环节都靠老师傅肉眼检查——这就是没有CI/CD的软件开发现状。GitHub Actions的出现,就像给软件交付装上了特斯拉的超级工厂流水线。 DeepSeek的CI/CD演进史就是一部血泪史:…

springboot+dubbo+zookeeper的注册服务和调用实践

目录 zookeeper为什么可作为注册中心zookeeper注册中心优缺点启动zookeeper编写springboot项目提供dubbo服务1. 服务接口2. Springboot引入dubbo实现服务接口2.1 工程目录和依赖2.2 启动程序和application.properties2.3 DubboService 实现服务接口2.4 测试api,用于…